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The H-phosphonate of a derivative of thioctic acid (TA) was synthesised and used to introduce a disulfide
moiety at the 5’-end of oligonucleotides. This method overcomes the difficulties experienced with the
phosphoramidite approach when employing a cyclic disulfide in the starting alcohol. The disulfide-mod-
ified oligonucleotides are subsequently used in metallic nanoparticle (Au and Ag) and surface function-
alisation for sensitive, sequence specific analytical detection strategies.

© 2010 Elsevier Ltd. All rights reserved.

The simple modification of oligonucleotide sequences is re-
quired for a variety of applications.! One such application is the
sensitive and specific detection of oligonucleotide sequences of
interest, which is of pivotal importance for the understanding
and management of genetic disease states.>> At the intersection
of bio- and nano-technology the conjugation of oligonucleotide
probes to metallic nanoparticles has been proven as an effective
method for the sensitive and selective detection of target se-
quences via strong plasmon-derived absorption,* scattering,” sur-
face-enhanced resonance Raman scattering (SERRS)® and/or
fluorescence (via quantum dots)’ properties. Enhanced conjugate
stability is a key requirement as these detection strategies are em-
ployed in increasingly complex matrices, the presence of common
biological buffer additives, in serum or in vivo, for example. As li-
gands for oligonucleotide-nanoparticle attachment, multi-dentate
thiol groups have been shown to confer improved stability with re-
spect to monothiol standards.2'° Tethering oligonucleotides to
surfaces via thioctic acid has been shown to provide probe conju-
gates of enhanced stability with both Au and Ag nanoparticles'®
and allow for an improved detection reproducibility when em-
ployed as a surface attachment group for oligonucleotide detection
on a gold nanostructured chip via SERRS.!!

To date, oligonucleotides have been modified by thioctic acid
(TA) at the 3’-terminus by the reaction of a pre-formed NHS-ester
intermediate with amino-modified controlled pore glass (CPG) so-
lid support for subsequent oligonucleotide synthesis.'® 5-Modifi-
cation has been achieved by both solution and solid phase post-
synthetic coupling of amino-modified oligonucleotides using the
pre-formed NHS-ester of thioctic acid (unpublished results). It
would, however, be more convenient for 5'- or mid-sequence mod-
ification of oligonucleotides to proceed via a solid phase synthesis
approach with the potential for automation.
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The most obvious synthetic method for the modification of the
5’-termini of oligonucleotides uses the phosphoramidite chemistry
developed by Caruthers et al. in the early 1980s.'>"'* In order to
employ the phosphoramidite method, the modifying group must
first possess an alcohol which reacts with the P phosphitylating
reagent, 2. The P! phosphoramidite product, 3, can then be intro-
duced on to the oligonucleotide chain on the solid support in the
presence of an activator.

Thioctic acid, TA, can be readily derivatised,'® in this case, via an
amide formation with aminohexanol to yield amide 1. However,
attempts at phosphitylating the resulting TA-alcohol, 1, did not
provide the desired phosphoramidite (Scheme 1). The phosphity-
lating reagent, 2-cyanoethoxy-bis(N,N-diisopropylamino) phos-
phine (2a) was used under standard conditions.!® Later attempts
were conducted using the chloro-analogue, 2-cyanoethoxy-N,N-
diisopropylaminochloro-phosphine (2b) a less stable and inher-
ently more reactive species. However, this also failed to yield the
desired product.

It was suspected that the highly reactive nature of the P" inter-
mediate, 3, had resulted in side-reactions with the cyclic disulfide
of TA rendering the product unsuitable for addition to the oligonu-
cleotide chain. Certainly, >'P NMR analysis showed a variety of
phosphorus species that suggested a mixture had, indeed, been
formed. It should be noted that the phosphoramidite of a cyclic
disulfide, dithiothreitol (DTT), has previously been reported and,
indeed, allows for both terminal and internal modifications.!’”
However, it is tentatively suggested that, in contrast to the six-
membered ring of DTT, the TA-phosphoramidite suffers from
self-reactivity and instability as a result of steric strain imparted
by the two sulfurs in a five-membered ring system.

In order to circumvent the problem of disulfide reaction at the
P'" centre, an H-phosphonate approach was exploited. H-Phospho-
nate chemistry originated in the 1950s in the laboratory of Lord
Todd and co-workers.'® The H-phosphonate method was found
to be suitable for solid phase synthesis,'®-2! particularly when
using pivaloyl chloride as an activator.'®!° Nevertheless, it was lar-
gely superceded by the phosphoramidite approach. The intermedi-


http://dx.doi.org/10.1016/j.tetlet.2010.08.107
mailto:duncan.graham@strath.ac.uk
http://dx.doi.org/10.1016/j.tetlet.2010.08.107
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet

5788

N
H

/\/\/\/OH +

J. A. Dougan et al./Tetrahedron Letters 51 (2010) 5787-5790

R N'Pr.
\P/ 2

@)

(¢}
o N'Pry
N/\/\/\/ ~p~
" |
§—sS O.
3

Scheme 1. Reagents and conditions: (i) BTT (0.25 M, 4.2 ml), CH,Cl,/THF (anhydrous), N, 1-4 h. Unsuccessful phosphitylation reactions, where the phosphitylating reagent,

2a, R = diisopropylamino- and 2b, R = chloro-.

ates of the H-phosphonate method are tetra-coordinated P" spe-
cies and, as such, are not susceptible to further reaction. The H-
phosphonate method is still used in situations where the oxidation
step is best avoided.?? This allows oxidation of the full sequence to
be carried out at the end of the oligonucleotide synthesis. Whilst,
in the case of TA-modification, oxidation was not a problem, using
a tetra-coordinated P" species was an attractive option as it was
believed that this might prevent the side-reactions which appeared
to be hindering the phosphoramidite method.

The H-phosphonate method also requires a suitable alcohol for
functionalisation. In this case, TA was coupled with aminopentanol
to introduce the required alcohol moiety. The H-phosphonate of
the TA-derivative was then prepared in the standard fashion by
dissolving, 4, in 1 M phosphorus acid in anhydrous pyridine and

o] o]
U
N /\/\/\O/ H\O'TEA‘ +
s—sS
4

§—S

X

N

adding pivaloyl chloride dropwise. The reaction was monitored
by thin layer chromatography, and upon completion, was treated
with a triethylamine bicarbonate quench. The reaction mixture
was worked-up and the product was extracted into dichlorometh-
ane. Flash column chromatography yielded the triethylamine salt
as a yellow oil in 47% yield.

Oligonucleotide sequences were synthesised on a MerMade 6
synthesiser using standard phosphoramidite techniques. Each 6-
mer sequence was prepared on a standard CPG column at 1 pmol
loading. Each synthesis was ended with a trityl deprotection step
to ensure that the 5-hydroxy of the terminal nucleoside would
be available for reaction with the H-phosphonate, 4.

The coupling (Scheme 2) was carried out with the H-phospho-
nate, 4, dissolved in 1:1 MeCN/pyridine and added to both a cyti-

(CHasC™ cl

Scheme 2. H-Phosphonate, 4, coupling onto cytidine-6-mer, 5a, using pivaloyl chloride, 6, yields TA-modified oligonucleotide, 7a. where 5b and 7b are the thymidine

analogues.
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Figure 1. RP-HPLC of TA H-phosphonate with cytidine 6-mer (5a) on solid support (note the cytidine 6-mer was not purified prior to reaction). tR = 15.5 min for product 7a.
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Figure 2. MALDI-TOF mass spectrometry (neg., ref. mode) of 7a after RP-HPLC purification and ZipTip™ preparation. The desired peak is observed at 2025.6 amu. Other peaks

correspond to internal calibration points.

dine-6-mer, 5a, and thymidine-6-mer, 5b, on a solid support using
pivaloyl chloride, 6, as activator. The reaction was carried out in a
silanised glass vial which was sealed and agitated for five minutes
with a mechanical shaker before the reaction mixture was re-
moved and the CPG was washed (3 x MeCN). Oxidation was
achieved with standard DNA synthesis-oxidising solution [0.2 M
iodine in THF/pyridine/water (7:2:1)]. Following reaction, the
CPG was treated with conc. ammonium hydroxide to cleave and
deprotect the sequences. This reaction could be carried out via
an automated synthesiser. However, care would be required for
the timing of reagent delivery to avoid pre-mixing which could
lead to self-reaction and the generation of an unreactive
pyrophosphate.

Reversed-phase HPLC was used to purify the reaction mixtures
an example of which is shown in Figure 1, corresponding to the
reaction between TA H-phosphonate, 4, and the cytidine-6-mer
on solid support, 5a, with pivaloyl chloride. Note that the 6C se-
quence was not purified prior to reaction with the TA H-phospho-
nate, 4. The peak at tg = 15.5 min corresponds to the thioctic acid-
modified sequence, 7a, as confirmed by MALDI-TOF mass spec-
trometry (Fig. 2). A mass of 2025.4 was required in negative ioni-
sation mode and modification was confirmed with the
observation of a peak at 2025.6. Other peaks relate to an internal
calibration standard. Note that, for brevity, HPLC and MALDI-TOF
data are not shown for the thymidine-6-mer analogue.

Reported herein is a facile route to 5'-cyclic-disulfide-modified
oligonucleotides. The H-phosphonate method should be investi-
gated in cases where the phosphoramidite approach is not viable.
Using the H-phosphonate method a route to otherwise trouble-
some modifications has been shown to be successful. Indeed, it is
suggested that this approach could be useful for a variety of mod-
ifications with groups that would be reactive to a trivalent, and
nucleophilic, P! intermediate.
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